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Brain metabolism dictates the polarity of
astrocyte control over arterioles

Grant R. J. Gordon', Hyun B. Choi', Ravi L. Rungta', Graham C. R. Ellis-Davies® & Brian A. MacVicar'

Calcium signalling in astrocytes couples changes in neural activity to alterations in cerebral blood flow by eliciting
vasoconstriction or vasodilation of arterioles. However, the mechanism for how these opposite astrocyte influences provide
appropriate changes in vessel tone within an environment that has dynamic metabolic requirements remains unclear. Here
we show that the ability of astrocytes to induce vasodilations over vasoconstrictions relies on the metabolic state of the rat
brain tissue. When oxygen availability is lowered and astrocyte calcium concentration is elevated, astrocyte glycolysis and
lactate release are maximized. External lactate attenuates transporter-mediated uptake from the extracellular space of
prostaglandin E,, leading to accumulation and subsequent vasodilation. In conditions of low oxygen concentration
extracellular adenosine also increases, which blocks astrocyte-mediated constriction, facilitating dilation. These data reveal
the role of metabolic substrates in regulating brain blood flow and provide a mechanism for differential astrocyte control

over cerebrovascular diameter during different states of brain activation.

In the brain, regional changes in neural activity trigger localized
alterations in cerebral blood flow' through astrocyte activation™’. A
rise in intracellular free calcium concentration ([Ca®*];) within
astrocyte endfeet, which collectively circumscribe all cerebral vessels*,
initiates vasoconstriction®” or vasodilation®®*°. Cerebral blood
flow couples to the lactate/pyruvate ratio and the related nicotina-
mide adenine dinucleotide (NADH)/NAD™" ratio'™, but links
between these metabolic substrates and the mechanisms of cerebral
blood flow regulation remain unresolved. We tested the hypothesis
that the metabolic state of the tissue, altered by oxygen (O,) availa-
bility, dictates the type of astrocyte influence on arteriole diameter. At
the onset of neural activity dendrites rapidly consume O, (ref. 14),
leading to a reduction in oxygen pressure (po,)">"'” and oxyhae-
moglobin'®"?, which occurs before the increase in cerebral blood
flow. Brain metabolism then shifts, whereby glycolysis is
enhanced®™”' in astrocytes' and lactate is released*>”. Lactate is
vasoactive'>** and dynamically alters microvasculature diameter in
an O,-dependent manner®. Vasodilation occurs in the brain region
experiencing the O, drop, whereas vasoconstriction ensues in the
inactive surrounding area®®. Delineating the cellular processes
responsible for O,-metabolic effects on cerebral blood flow may be
crucial for treating stroke and vascular dementia, as well as aiding in
our understanding of neurovascular coupling for the scientific and
diagnostic uses of functional magnetic resonance imaging.

Po2 converts polarity of vessel response

We tested whether po, consistently determined if vasoconstrictions
or vasodilations were evoked by synaptic activation or by astrocyte
Ca’™ transients in rat brain slices. In response to periodic 10-20-Hz
stimulation of the hippocampal CA3—-CA1 pathway in conditions of
high O, concentration (95%) arterioles constricted (81.4 % 3.8%
(100% = control diameter), n = 6, P < 0.007), whereas the same ves-
sel in low O, concentration (20%) dilated (107.6 = 0.7%, n =6,
P<0.005, P<0.0003 to each other, Fig. 1a—c) in response to the
same stimulation. To determine the impact of po, on astrocyte con-
trol of arteriole diameter we applied the metabotropic glutamate

receptor (mGIuR) agonist (*)-1-aminocyclopentane-trans-1,3-
dicarboxylic acid (tACPD) (100 puM), which potently increased
astrocyte [Ca®"]>** (240.0 = 19.1%, n=14, P<0.001, Fig. 2a)
and caused arteriole dilation in conditions of low O, concentration
(107.0 £ 0.8%, n =23, P<0.001, Fig. 2a, f) but constriction in con-
ditions of high O, concentration® (85.4 = 4.0%, n= 10, P<<0.006,
Fig. 2f). Next we used two-photon photolysis of the Ca*" cage
dimethoxy-nitrophenyl-EGTA-4 (DMNPE-4)* to liberate directly
astrocyte Ca’" and examine the vessel response. Uncaging
DMNPE-4 triggered a Ca>" wave that spread to multiple astrocyte
endfeet (Fig. 2b, ¢). In contrast to previous results in conditions of
high O, concentration where astrocyte endfeet Ca>* caused constric-
tion®, in conditions of low O, endfeet Ca®* (232.2 + 8.5%, n =17,
P <0.001) caused dilation (107.4 = 1.0%, n =17, P < 0.003, Fig. 2b,
¢, f). These data indicate that po, dictates the direction of arteriole
diameter change when astrocytes are activated (Supplementary Fig. 2
for po, measurements).

Vasodilation requires COX and PGE,
Astrocyte Ca®" activates cytosolic phospholipase A,, triggering
formation of arachidonic acid that is either converted to 20-hydro-
xyeicosatetraenoic acid (20-HETE) in smooth muscle cells causing
vasoconstriction® or to the vasodilator prostaglandin E, (PGE,) in
astrocytes via cyclooxygenase (COX)>’. We verified COX1 and
COX2 expression in astrocytes and their endfeet (Supplementary
Fig. 3). The COX inhibitor indomethacin (100 M) blocked vasodi-
lations caused by tACPD (98.4 = 0.8%, n=9, P<<0.0001 to tACPD
alone, Fig. 2f) and by caged Ca*" photolysis (101.0 + 0.5%, n = 6,
P<0.002 to uncaging alone, Fig. 2d, f) in conditions of low O,
concentration. Application of the COX product PGE, (1 pM) elicited
vasodilation (109.4 *2.7%, n=4, P<0.05, Fig. 2e), confirming
COX activation and that the generation of PGE, is an important
signalling molecule in astrocyte-mediated vasodilations in condi-
tions of low O, concentration®’.

We investigated how changing po, could modify the type of astro-
cyte influence on arterioles. Lowering po, may elevate anaerobic
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Figure 1| Lowering po, converts vasoconstriction to vasodilation.

a, Arteriole before and after synaptic activation in high O, (left) and low O,
(right). Dashed vertical lines indicate the previous position of the vessel wall.
b, Top: vessel lumen diameter changes over time in the same vessel shown in
a. Arrows indicate time of afferent stimulation. Bottom: two expanded
timescales show the stimulation protocol (350-ms, 20-Hz train repeated 5
times at 0.75 Hz) and the first train of the field excitatory postsynaptic
potentials evoked, verifying synaptic activity. ¢, Summary data (n = 6). In all
figures, experimental values are the mean * s.e.m. Double asterisk, P < 0.01.

metabolism, increasing external lactate. Notably, the action of PGE,
is terminated when prostaglandin transporters (PGTs) take up PGE,
by an exchange of intracellular lactate*®. Owing to the influence of a
lactate concentration gradient on PGT efficacy, we tested the hypo-
thesis that higher levels of extracellular lactate reduce PGT uptake of
PGE,, thereby increasing the external PGE, concentration resulting
in vasodilation. Immunohistochemistry revealed that PGT was
expressed in astrocyte endfeet (Fig. 3a) and neurons (Fig. 3b), indi-
cating that both cell types take up PGE,. Consistent with a positive
correlation between external lactate and external PGE,, low O, con-
centration enhanced both lactate release (low O,, 114.2 = 9.1 uM,
n = 6; high O,, 41.9 £ 5.6 uM, n =6, P<0.001, Fig. 3c) and extra-
cellular PGE, levels when PGE, production was triggered by tACPD
(low O, 136.1 £ 10.2pgml~', = 6; high O,, 91.9 + 12.6 pgml ™",
n =4, P<0.001, Fig. 3d). Addition of lactate (1 mM) enhanced the
PGE, level (control, 40.5*3.3pg ml™ % with lactate,
58.0 = 3.1pgml ™', n =5, P<0.01) and increased arteriole diameter
(107.5 = 1.0%, n =15, P<0.0001, Fig. 3e—g). Lactate-induced dila-
tions were blocked by indomethacin (100.4 = 0.4%, n=11,
P<0.0001 to lactate alone, Fig. 3g), indicating that they were
mediated by PGE, via the COX pathway. These data indicate that
in low O, concentration higher levels of extracellular lactate raise
external levels of PGE,.

Vasodilation requires lactate

We examined the role of astrocyte glycolysis in lactate production®*
by imaging the intrinsic fluorescence of the metabolic electron carrier
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Figure 2 | O,-mediated conversion to astrocyte-mediated vasodilation
requires COX and PGE,. a, Top: astrocytes (red) surround arteriole.
Bottom: astrocyte Ca”" signals occur coincident with vasodilation caused by
the mGluR agonist tACPD in low O,. b, Top: uncaging astrocyte Ca> " causes
vasodilation in low O,. Bottom: expanded timescale shows that astrocyte
endfoot Ca®" precedes diameter increase. ¢, Vessel and pseudo-coloured
endfoot Ca®" changes corresponding to times in b. d, Blocking COX
prevents vasodilation caused by uncaging Ca>" in low O,. e, PGE, causes
vasodilation in low O,. f, Summary data. Asterisk, P < 0.05; double asterisk,
P<0.01.

NADH™. Two-photon excitation of NADH provides a measure of
both oxidative metabolism (punctate mitochondrial fluorescence)
and glycolytic metabolism (diffuse cytosolic fluorescence)'t. We
observed that astrocytes, stained with SR-101 (ref. 31), showed dif-
fuse NADH fluorescence in the soma and endfeet (Fig. 3h, i).
Stimulating glycolysis with low O, increased the astrocyte NADH
signal (124.6 * 1.4%, n= 5, P<0.003, Fig. 3i, j) and inhibiting gly-
colysis with iodoacetate (200 uM) reduced basal NADH levels
(87.8 =£2.0%, n =15, P<<0.004, Fig. 3k). Inhibiting lactate dehydro-
genase (LDH, which converts pyruvate and NADH to lactate and
NAD™; Supplementary Fig. 1) with oxamate (2.5mM) increased
NADH (119.3 * 2.0%, n =6, P < 0.004, Fig. 31). These data indicate
that astrocyte glycolysis can be augmented by reducing po,.

Recent two-photon NADH imaging demonstrated an increase in
astrocyte glycolysis caused by neuronal activity'*. We proposed that
mGluR activation enhances astrocyte glycolysis in conditions of low
0,, promoting increases in extracellular lactate and vasodilation.
tACPD triggered an increase in astrocyte NADH (128.7 * 4.1%,
n=7, P<0.0005, Fig. 4a—e) coincident with lumen widening
(108.5 £ 0.7%, n=7, P<0.01, Fig. 4b, ¢). tACPD enhanced extra-
cellular lactate, which was greatest in low O, (low O,
186.7 £ 11.2 uM, n = 6; high O,, 98.6 = 10.2 uM, n =7, P<0.001,
Fig. 4f). For additional NADH measurements see Supplementary
Figs 4 and 5. We used two pharmacological treatments to limit lactate
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Figure 3 | Low O, facilitates lactate and PGE, release and enhances
astrocyte glycolysis. a, b, Inmunohistochemistry showing that astrocyte
endfeet and neurons express PGT. ¢, Lactate release is elevated in conditions
of low O,. d, tACPD increases PGE, release most in conditions of low O,.
e-g, Lactate dilates arterioles and requires COX. Double asterisk, P < 0.01.
h, Metabolic NADH signal (green image stack) in astrocytes (red image
stack). i, Low O, increases NADH signal. j, Astrocyte NADH changes caused
by low O,. k, I, Astrocyte NADH in response to glycolysis inhibition with
iodoacetate (IA, k) or LDH inhibition with oxamate (I). Green traces are
single experiments; grey traces are summary data.

release. Using iodoacetate to block the source of lactate, tACPD
instead decreased astrocyte NADH (81 * 0.4%, n =5, P<0.0001
to tACPD alone, Fig. 4g) and failed to dilate vessels (97.8 = 0.2%,
n=15, P<<0.0001 to tACPD alone, Fig. 4i). The NADH signal
decrease was probably due to tACPD-induced astrocyte swelling.
Using oxamate to curtail lactate formation, tACPD still increased
astrocyte NADH (112.8 =3.1%, n=6, P<0.02, Fig. 4h; see
Supplementary Fig. 1), yet vasodilations no longer occurred
(99.0 = 0.1%, n =6, P<<0.0001 to tACPD alone, Fig. 4i). The lack
of dilation was associated with reduced extracellular lactate (tACPD,
180.2 = 11.9uM, n=6; plus iodoacetate, 88.2*8.8uM, n==6,
P<0.001; plus oxamate, 89.1 £ 6.6 uM, n=6, P<0.001, Fig. 4j)
and PGE, (tACPD, 154.0 + 10.1 pgml ™', n=4; plus iodoacetate,
1154+ 106pgml” ', n=6, P<0.00l; plus oxamate,
94.6 = 7.6pgml™', n=6, P<0.01, Fig. 4k). Because PGE, is the
final effector molecule on smooth muscle cells, we rescued vasodila-
tion with PGE, in iodoacetate (109.0 = 1.3%, P<<0.002, n=>5,
Fig. 4i) or in oxamate (109.2 = 2.2%, P<<0.02, n =15, Fig. 4i and
Supplementary Fig. 6). These data demonstrate that inhibition of
glycolysis or LDH limits extracellular lactate and PGE, accumulation
in response to tACPD in low O, conditions, preventing astrocyte-
mediated vasodilations.

Adenosine blocks vasoconstriction

Our data do not yet explain why vasoconstrictions are absent in low
0,. A low-O, environment causes an elevation in extracellular
adenosine’”, and adenosine A2A receptors reduce smooth muscle
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Figure 4 | Glycolysis and lactate release is required for vasodilations.
a-d, Astrocyte NADH increases (measurements from the regions of interest
(ROISs)) coincident with vasodilation in response to tACPD in low O,.

e, tACPD increases cytosolic NADH in astrocytes. f, tACPD increases
extracellular lactate most in conditions of low O,. g, tACPD decreases
astrocyte NADH during glycolysis inhibition with iodoacetate (IA).

h, tACPD increases astrocyte NADH during LDH inhibition with oxamate.
Green traces are single experiments; grey traces are summary data. i, tACPD
fails to dilate vessels in the presence of oxamate or iodoacetate, and PGE,
rescues vasodilation in these compounds. j, k, The increase in lactate and
PGE, levels caused by tACPD is reduced in oxamate and iodoacetate.

cell Ca** channel activity*!, which normally acts to induce smooth
muscle cell contraction. We hypothesized that A2A receptor activa-
tion prevents astrocyte-mediated vasoconstriction. Adenosine also
suppresses synaptic glutamate release through the Al receptor®;
thus, we confirmed an elevated adenosine concentration in low O,
when the A1 receptor antagonist 8-cyclopentyl-1,3-dipropylxanthine
(DPCPX; 100 nM) increased the slope of the extracellular field poten-
tial (low Oy, 277.7 £ 63.6%, n=9; high O,, 99.1 = 7.1%, P < 0.05,
n=>5, Fig. 5a) and decreased the paired-pulse ratio (low O,
1.79 = 0.04; plus DPCPX, 1.42 *0.05, P<<0.0001, n=9; high O,,
1.47 £ 0.01; plus DPCPX, 1.49 = 0.03, P> 0.5, n =5, Fig. 5a) only
in low O,. In the presence of adenosine (100 tM), uncaging astrocyte
Ca’" in high O, concentration resulted in no vasoconstriction
(99.6 £ 0.9%, P> 0.6, n = 4, Supplementary Fig. 7). After an initial
uncaging event that caused constriction (87.1 = 1.3%, P<0.002,
Fig. 5b), the A2A receptor agonist CGS21680 (1 M) blocked sub-
sequent constriction (99.3 = 0.5%, P < 0.0004 to constriction, n =7,
Fig. 5b) despite similar astrocyte Ca®* signals (F/Fo = 179.9 = 10.9%;
plus CGS21680 F/Fy = 173.8 = 10.3%, n=7, P> 0.7). A2A receptor
activation did not affect PGE, in response to tACPD (217.0 =
20.4%, n = 5; plus CGS21680, 186.6 = 12.1%, n =6, P> 0.2), allow-
ing vasodilations to proceed in low O,. These data demonstrate that
increasing extracellular adenosine levels, which occurs in low O,
prevents astrocyte-mediated vasoconstriction, thereby facilitating
the switch to vasodilation.
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Figure 5 | Raising adenosine and PGE; levels converts the vessel response.
a, Enhancement of synaptic transmission by DPCPX shows that
extracellular adenosine is elevated in conditions of low O, concentration.
Scale bars: 0.3 mV, 5 ms. EPSP, excitatory postsynaptic potential. b, In
conditions of high O, concentration uncaging Ca*" fails to cause
vasoconstriction in the presence of the A2A receptor agonist CGS21680.

¢, T34 blocks lactate from increasing PGE, levels. NS, not significant.

d, Summary of vessel responses. Values for lactate plus T34 and tACPD plus
T34 were normalized to T34 baseline. e, In conditions of high O,
concentration uncaging Ca®" in adenosine and lactate triggers vasodilation
instead of vasoconstriction. f, In conditions of high O, concentration vessel
responses caused by uncaging Ca®" convert from vasoconstriction to
vasodilation in the presence of adenosine and T34.

Lactate attenuates PGT efficacy

We pharmacologically inhibited PGTs to raise extracellular levels of
PGE, and examine the effect on arterioles. Blockade of PGTs with
TGBz T34 (ref. 35) (hereafter called T34) (20 uM) elevated PGE,
levels (669.0 = 110.8%, P <<0.0001, n = 4, Fig. 5¢) and dilated arter-
ioles (107.0 = 0.8%, P < 0.001, n = 7, Fig. 5d), indicating tonic PGE,
uptake. Adding tACPD further enhanced the PGE, level (T34 plus
tACPD, 1,048.9 = 173.6%, P < 0.02 compared to T34, n = 3, Fig. 5¢)
and caused further dilation (T34 plus tACPD, 109.1 % 1.3%,
P<0.0004 from T34 baseline, n = 7, Fig. 5d), indicating that PGE,
release occurs by diffusion and not by the transporter’. However,
adding lactate did not further augment PGE, (T34 plus tACPD plus
lactate, 1,134.2 = 138.7%, P> 0.4 compared to T34 plus tACPD,
n=4, Fig. 5¢) in contrast to the additive effects of lactate and
tACPD without T34 (lactate, 124.0 = 11.9%, P<<0.02, n=3;
tACPD, 145.6 = 11.6%, P<0.001, n=6; lactate plus tACPD,
207.0 = 24.3%, n= 3, P<0.005 to tACPD or lactate alone, Fig. 5¢).
Dilation caused by T34 was not increased further by lactate (T34 plus
lactate, 99.4 * 1.4%, P> 0.1 from T34 baseline, n = 9, Fig. 5d). These
data indicate that T34 occludes the lactate effects of raising PGE, and
causing vasodilation. This demonstrates that PGT efficacy controls
the PGE, level and thus vascular tone.

PGE; and adenosine convert constrictions

We reasoned that adding lactate (100 pM to 1 mM) and adenosine
(100 uM) in conditions of high O, would enable astrocyte-mediated
constrictions to convert to dilations by attenuating PGE, uptake and
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blocking vasoconstriction, respectively. Under this condition, Ca®"
uncaging now resulted in dilation (107.5 = 1.4%, P < 0.004 to aden-
osine alone, n =9, Fig. 5d, e), despite equivalent Ca>" signals in
astrocyte endfeet compared with adenosine alone (adenosine,
F/Fy=160.4 *6.1%, n=4; plus lactate, F/Fy=159.6 = 5.1%,
P>0.8, n=9, Supplementary Fig. 7). We hypothesized that PGT
blockade by T34 in high O, would have a similar result by reducing
PGE, uptake, thereby raising extracellular PGE,. In the same vessel,
an initial uncaging event caused constriction (87.4 % 1.8%,
P<0.009, Fig. 5d, f) but a second uncaging event in the presence
of T34 and adenosine caused dilation (108.7 = 1.4%, n =5, P<0.02,
P <0.0001 to constriction, Fig. 5d, f). These data indicate that astro-
cytes induce vasodilation over vasoconstriction when constrictions
are prevented by adenosine and PGE, uptake is reduced by elevated
lactate.

Here we show that by lowering po,, astrocyte-induced responses
convert to vasodilations from vasoconstrictions. Astrocyte Ca”"
transients from mGluR activation trigger the synthesis of diffusible
arachidonic acid and PGE,. In high O,, extracellular PGE, is rapidly
cleared by PGTs as a result of low extracellular lactate levels. This
keeps extracellular PGE, levels low and allows astrocyte-derived
arachidonic acid to constrict arterioles®. In low O,, astrocyte gly-
colysis is enhanced and extracellular lactate increases. High external
lactate hinders PGE, clearance and increases extracellular PGE,,
which dilates arterioles. In addition, increased adenosine release in
low O, inhibits astrocyte-mediated vasoconstrictions at the level of
smooth muscle cells, blocking the effect of arachidonic acid
(Supplementary Fig. 1). Flow through blood vessels is proportional
to vessel radius to the fourth power; therefore, a ~9% change in
arteriole diameter reported here equates to a ~45% increase in
cerebral blood flow. This change is consistent with astrocyte-
mediated vasodilations observed in vivo® and can account for cereb-
ral blood flow changes measured by positron emission tomo-
graphy”’ and with  two-photon  microscopy®®*  during
physiological activation. Previous studies on the bidirectional con-
trol of vessel diameter implicated different populations of GABA
neurons®’, nitric oxide levels® and pericytes*'. Our data indicate that
the separate yet competing molecular pathways regulating cerebral
blood flow from astrocytes would reach an equilibrium, which shifts
depending on the degree of metabolic activity. Under more qui-
escent periods when O, is not being rapidly consumed, astrocyte
Ca®" signals induce constrictor tone, keeping cerebral blood flow at
an appropriate lower level. During more active periods, the drop in
Pos from oxygen consumption and the rise in extracellular lactate
and adenosine promote astrocyte-mediated dilation. Manipulating
this balance may be a therapeutic avenue for treating the inappro-
priate declines in cerebral blood flow that occur in some dementias
and after stroke.

METHODS SUMMARY

Hippocampal-neocortical slices were prepared from juvenile (postnatal age 16—
21 days), male, Sprague—Dawley rats. Treatment of animals was approved by the
University of British Columbia Animal Care and Use Committee. Artificial
cerebrospinal fluid (ACSF) bubbled with 95% O,, 5% CO,, was defined as high
0, and 20% O,, 5% CO,, balanced N,, was defined as low O,. Astrocytes were
loaded with the Ca®" cage DMNPE-4/AM (10 pM) and/or the Ca** indicator
rhod-2/AM (10 uM) as previously described’. A two-photon laser-scanning
microscope (Zeiss LSM510-Axioskop-2 fitted with a 40X-W/0.80 numerical
aperture objective lens) coupled to a Chameleon ultra-tunable ultra-fast laser
(~100-fs pulses 76 MHz, Coherent) provided excitation of rhod-2, intrinsic
NADH and was used for uncaging Ca®". Arterioles were imaged by acquiring
the transmitted laser light and using IR-DIC optics. Quantification of lumen
diameter, NADH and Ca*" changes were performed with Zeiss LSM (version
3.2) software and Image]J. The assay used for measuring PGE, release was Specific
Parameter PGE, ELISA kits (R&D systems). Extracellular lactate levels were
measured using a lactate assay kit (Biomedical Research Service Centre).
Experimental values are the mean * s.e.m., expressed as a percentage of 100%
control.
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Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS

Slice preparation and O, conditions. Sprague—Dawley rats were anaesthetized
with halothane (Sigma), decapitated and the brains removed into ice-cold slicing
solution containing (in mM): NaCl, 87; KCl, 2.5; NaHCO3, 25; CaCl,, 0.5;
MgCl,, 7; NaH,POy, 1.25; glucose, 25; sucrose, 75; saturated with 95% O,/5%
CO,. Transverse hemi-sections, 400 pm thick, were sliced (Leica vibratome) and
incubated at 34 °C in ACSF containing (in mM): NaCl, 126; KCl, 2.5; NaHCOs,
26; CaCl,, 2.0; MgCl,, 1.5; NaH,PO,, 1.25; glucose, 10; saturated with 95% O,/
5% CO, for 60 min. For experiments slices were at 22-24 °C and perfused at
~2mlmin~". 20% O, provided a po, on the low end of physiological'®
(Supplementary Fig. 2). Healthy slices can be maintained in 20% O, (ref. 42).
Imaging and uncaging. Images were acquired between 50 and 100 pm deep into
the slice. Rhod-2 was excited at 835 nm (~3 mW after the objective) and fluor-
escence was detected with a PMT after passing through a 605-nm (55-nm band-
pass) emission filter. For uncaging, the laser was tuned to 730 nm, which also
excites rhod-2 (ref. 43). The laser power was carefully increased (~40 mW after
the objective) until a Ca** signal, characteristic of internal release, occurred
within astrocytes, triggering a Ca®* wave. The nonlinearity of two-photon
microscopy** ensures no uncaging occurs during rhod-2 excitation.

For NADH excitation the laser was tuned to 740 nm' (~30 mW after the
objective) and fluorescence was detected with a PMT after passing through a
450-nm (30-nm band-pass) emission filter. Time series NADH images were
acquired every 30 s. NADH z-stacks (one control and then one treatment) were
acquired continuously. Although exhibiting identical spectral properties to
NADH, NADPH is thought to contribute little to the fluorescence signal*>*°.
Lactate and PGE, measurements. Protocols in suppliers’ instructions were
followed for the PGE, ELISA and the lactate assays. In both, tetrodotoxin
(TTX, 1uM) and 3,7-dihydro-1-methyl-3-(2-methylpropyl)-1H-purine-2,6-
dione (IBMX, 100 pM) were added to dampen neuronal activation and preserve
cAMP, respectively. cAMP facilitates glycogen breakdown” which is important
for astrocyte glycolysis**. We confirmed that the same effects occur, yet at higher
values, without these compounds.

Immunohistochemistry. Twenty-micrometre sections were used for immuno-
staining as described®. Sections were incubated in blocking solution containing
0.5% BSA and 0.2% Triton X-100 in 0.1 M PBS for 30 min. Sections were incu-
bated overnight at 4 °C with primary antibodies against GFAP (1:1,000; Sigma),
MAP?2 (1:1,000; Chemicon), COX1 (1:200; Santa Cruz Biotechnology), COX2
(1:200; Santa Cruz Biotechnology), or PGT (1:100; Alpha diagnostic). Sections
were then incubated with secondary antibodies: FITC-conjugated mouse anti-
rabbit IgG, FITC-conjugated donkey anti-mouse IgG, rhodamine-conjugated
rabbit anti-goat IgG or rhodamine-conjugated goat anti-mouse IgG at room
temperature for 2h in darkness (all secondary antibodies from Santa Cruz
Biotechnology).

Electrophysiology. For extracellular recordings examining adenosine, slices
were maintained at 34 °C and bubbled with an O, treatment 45 min before
experimentation. Field excitatory postsynaptic potentials (fEPSPs) were evoked
by stimulating the hippocampal CA3—CA1 pathway using a concentric bipolar
electrode (Frederick Haer Co.) and were acquired in stratum radiatum. fEPSPs
were evoked every 30s and were analysed for slope (mV ms ') (see ref. 33 for
details). Responses were normalized to the control mean. A second response,
50 ms after the first, was evoked for the paired-pulse. The paired-pulse ratio
equals the average of ten sweeps during DPCPX/average of ten sweeps immedi-
ately before DPCPX.
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To test synaptic activation in vasomotion, a stimulating electrode and record-
ing electrode were positioned ~250 um apart in the CA3—CA1 pathway, strad-
dling the vessel. A 10-20-Hz stimulation train 350-1,000 ms in duration was
repeated 5-10 times at a rate of 0.5-1 Hz. Once a constriction was observed in
high O,, the same stimulation protocol was used in low O, to evoke dilation.
Forty minutes equilibration was allowed when the po, was changed.

Data collection, analysis and statistics. An image (512 X 512 pixels) was col-
lected in 393.2-983.4 ms, using 8-line averaging. Lumen diameter measurements
were made at multiple sites along the vessel. Fluorescence signals were defined as
F/Fy (%) = [(F; — By)/(Fy — By)]100, where F; and F, are fluorescence at a given
time and the control period mean, respectively. B; and By are the corresponding
background fluorescence signals. Background values were taken from the neu-
ropil for rhod-2 and the vessel lumen for NADH. Pseudo-colour images show
absolute changes in fluorescence (Image], 16-colour linear Lut). Experimental
values are the mean * s.e.m.; baseline equals 100%; 7 is the number of experi-
ments conducted. Lumen diameter changes: 90% means a reduction in diameter
by 10% and 110% means an increase in diameter by 10%. Statistical tests were
either a two-tailed Student’s #-test or an ANOVA with a Neumann—Keuls post-
hoc test for comparison between multiple groups. P<<0.05 was accepted as
statistically significant (asterisk, P < 0.05; double asterisk, P<<0.01).

Drugs. Sigma supplied tACPD, applied for 5-10 min; lactate, applied for
5-10 min and pH-corrected to 7.4; sodium-oxamate and sodium-iodoacetate,
applied continuously with 15 min incubation (iodoacetate exposure of ~30 min
generated an ‘anoxic-depolarization-like’ wave causing vessel spasms; tACPD
was assessed before this event); indomethacin, applied continuously with 20 min
incubation; IBMX, present during the release assays; U46619, applied continu-
ously with 20 min incubation. Tocris supplied DPCPX, applied continuously;
CGS21680, applied continuously with 20 min incubation. Alamone labs sup-
plied tetrodotoxin, present during release assays. Cayman Chemicals supplied
PGE,, applied for 5min. Invitrogen supplied rhod-2/AM. DMNPE-4/AM was
synthesized by G. Ellis-Davies. T34, puffed from a pipette or bath applied, was a
gift from V. L. Schuster.
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