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Cell Survival under Stress Is Enhanced by a Mitochondrial ATP-
Binding Cassette Transporter That Regulates Hemoproteins

John Lynch, Yu Fukuda, Partha Krishnamurthy, Guoqing Du, and John D. Schuetz

Department of Pharmaceutical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee

Abstract

The ATP-binding cassette (ABC) transporter ABCB6 localizes
to the mitochondria, where it imports porphyrins and up-
regulates de novo porphyrin synthesis. If ABCB6 also increases
the intracellular heme concentration, it may broadly affect the
regulation and physiology of cellular hemoproteins. We tested
whether the ability of ABCB6 to accelerate de novo porphyrin
biosynthesis alters mitochondrial and extramitochondrial
heme levels. ABCB6 overexpression increased the quantity of
cytosolic heme but did not affect mitochondrial heme levels.
We then tested whether the increased extramitochondrial
heme would increase the concentration and/or activity of
cellular hemoproteins (hemoglobin, catalase, and cytochrome
¢ oxidase). ABCB6 overexpression increased the activity and
quantity of hemoproteins found in several subcellular
compartments, and reduction of ABCB6 function (by small
interfering RNA or knockout) reversed these findings. In
complementary studies, suppression of ABCB6 expression
sensitized cells to stress induced by peroxide and cyanide,
whereas overexpression of ABCB6 protected against both
stressors. Our findings show that the ability of ABCB6 to
increase cytosolic heme levels produces phenotypic changes
in hemoproteins that protect cells from certain stresses.
Collectively, these findings have implications for the health
and survival of both normal and abnormal cells, which rely
on heme for multiple cellular processes. [Cancer Res 2009;
69(13):5560-7]

Introduction

ATP-binding cassette (ABC) transporters use ATP to facilitate
transmembrane movement of a variety of structurally diverse
compounds. We recently characterized the mitochondrial ABC
transporter ABCB6 (1) and found that ABCB6 binds porphyrins,
including heme. We showed that ABCB6 overexpression increases
de novo porphyrin biosynthesis and the mitochondrial concentra-
tion of protoporphyrin IX (PPIX), the penultimate precursor of
heme. However, we did not assess changes in heme concentration.

It is likely that ferrochelatase limits the rate of heme biosynthesis
in the mitochondria by limiting the conversion of PPIX to heme
(2, 3). If this is not the case, then the mitochondrial heme
concentration may increase in parallel with ABCB6-mediated
increases in PPIX concentration. However, the mechanism of heme

Note: Supplementary data for this article are available at Cancer Research Online
(http://cancerres.aacrjournals.org/).
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transit from the mitochondria to the cytosol is unknown, and
increased mitochondrial heme does not necessarily predict
increased cytosolic heme. Because the heme components iron
and PPIX are toxic to cells (iron generates hydroxyl radicals by
Fenton-based reactions and PPIX catalyzes light-dependent
generation of oxygen radicals), it is important to know whether
increased ABCB6 expression results in greater heme biosynthesis
and accumulation in cytosol and/or mitochondria.

Movement of heme from the mitochondria to the cytosol
requires protein synthesis (4-7), and movement of heme through
the cytosol is likely to require chaperones. Because the translation
or assembly of some hemoproteins [e.g., globin (8), catalase, and
cytochrome ¢ oxidase (9-13)] requires heme, the concentration of
these proteins may depend on the availability of cytosolic heme.
However, increased cellular heme is not always associated with
an increase in hemoproteins. For example, overexpression of the
mitochondrial ABC transporter ABCB7 increases heme levels but
has no effect on the level of catalase (14), suggesting that processes
downstream of ferrochelatase limit the rate of hemoprotein
formation.

Here, we show that ABCB6 overexpression increases the
intracellular concentration of heme and hemoglobin via de novo
porphyrin synthesis. ABCB6 also increases the activity or
concentration of hemoproteins that protect against certain
stresses. These results establish the interrelation of ABCB6
function, heme, hemoproteins, and cell survival.

Materials and Methods

Cell culture. K562 myelogenous leukemia cells transduced with either
empty vector (MSCV) or vector encoding ABCB6 were maintained, as
previously described (1). Mouse embryonic fibroblasts (MEF) were obtained
from Abcb6~'~ (the development and characterization of Abch6~'~ animals
will be described elsewhere) and Abch6™* embryos (E13.5) sacrificed by
decapitation, washed with PBS, and trypsinized. Cells were disaggregated by
passage through a 21-gauge needle and maintained at 37°C in DMEM
supplemented with 10% fetal bovine serum (FBS), 2 mmol/L glutamine
(Life Technologies), 50 mg/mL penicillin/50 units/mL streptomycin
(Life Technologies), MEM nonessential amino acids (Life Technologies),
and 55 umol/L B-mercaptoethanol.

Isolation and purification of mitochondria. Cells were pelleted in
1X Hanks buffered saline solution (Life Technologies), resuspended in
buffer A [10 mmol/L NaCl, 1.5 MgCl,, 10 mmol/L Tris (pH 7.4)] containing
1X protease inhibitor cocktail (Roche), swollen on ice, and disrupted with
a type B Dounce homogenizer. Buffer B [525 mmol/L mannitol,
175 mmol/L sucrose, 12.5 mmol/L Tris (pH 7.4), and 2.5 mmol/L EDTA]
was added in a ratio of 4:10 homogenate/buffer B. The supernatant
was collected after centrifugation at 1,300 X g for 10 min. This step was
repeated until no pellet was visible. The remaining supernatant was
centrifuged at 14,000 X g for 15 min to pellet mitochondria. The crude
mitochondria were purified from the endoplasmic reticulum (ER) as
previously described (14).

Enzyme and hemoglobin assays. PPIX concentration was measured
by fluorescence-activated cell sorting (1). Lactate dehydrogenase (LDH)
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activity was measured as reduction of the tetrazolium salt substrate to the
soluble formazan in the presence of NADH by using the LDH kit from
Biomedical Research Service Center (Buffalo, NY). Catalase was assayed by
using a kit from BRSC. Superoxide dismutase activity was determined by
using a kit (Fluka) according to the manufacturer’s instructions. Succinate
dehydrogenase activity was assayed by the reduction of 2-14-iodophenyl 3-
(4-nitrophenyl) 5-phenyl tetrazolium chloride from the tetrazolium salt to
the formazan. After ethyl acetate extraction, absorbance was read at 490 nm
and concentration was determined using a molar extinction coefficient of
11.5 mmol/L ™" ¢cm™". Cytochrome ¢ oxidase activity was measured as the
oxidation of cytochrome c¢ at 550 nm. Hemoglobin concentration was
measured spectrophotometrically by absorbance at 414 nm.

High-performance liquid chromatography assay of cellular heme.
Extraction and high-performance liquid chromatography (HPLC) analysis of
heme was performed essentially as described (15). Briefly, heme was
extracted from disrupted cell lysates with acidified acetone (2.5% HCI).
Extracts were clarified by centrifugation and analyzed by reverse-phase
HPLC using a 4.6-pm X 150-mm C18 column (heme b retention time was
16 min at a flow rate of 1 mL/min). The acetonitrile elution gradient
increased from 30% to 60% acetonitrile over the first 5 min and from 60% to
90% over the next 35 min. TCA (0.05%) was included in all mobile phases.
Absorbance was read at 400 nm; the range of linear detection of heme was
160 nmol/L to 5 pmol/L.

Protein synthesis inhibition. K562 cells were seeded at 2 X 10°/mL in
DMEM with 10% supplemented FBS (Hyclone), 50 mg/mL penicillin/50
units/mL streptomycin (Life Technologies), and 2 mmol/L r-glutamine
(Life Technologies). Cycloheximide (50 pg/mL) was added to inhibit protein
synthesis for the indicated time intervals.

Cytotoxicity. K562 or MEF cells were seeded as described above,
treated with the indicated concentrations of H,0, or KCN for 4 h, washed
with 1X Hanks buffered saline solution, and assessed for viability by trypan
blue dye exclusion.

De novo porphyrin synthesis. The de novo synthesis of porphyrins
was measured by analyzing incorporation of radiolabeled [**Cglycine, as
previously described (1).

Results

ABCB6 overexpression increases the PPIX, heme, and
hemoglobin content of K562 cells. A recent report suggested
that ABCB6 localizes to the plasma membrane, as well as to the
mitochondria (16). Therefore, we first wished to confirm the
localization of ABCB6 in K562 cells retrovirally transduced with
empty vector or ABCB6. Our previous studies showed mitochon-
drial, but not plasma membrane, localization of ABCB6 in these
cells (1). To rule out possible ER contamination, we separated ER
and mitochondrial fractions by limited proteolysis, as previously
described (17). We then separated the soluble proteolyzed
fragments from the pellet by centrifugation. ABCB6 colocalized
with the mitochondrial marker VDAC in the pellet, but not with the
ER marker Grp94 in the supernatant (Fig. 14). Therefore, ABCB6
localizes to the mitochondria in K562 cells and not to the ER.

K562 cells expressing ABCB6 showed increased PPIX biosynthe-
sis as reflected by increased PPIX fluorescence, whereas those
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Figure 1. Mitochondrial ABCB6 overexpression alters porphyrin and hemoprotein homeostasis. A, mitochondria (pellet, p) were separated from ER (supernatant, s) by
limited tryptic digestion. The fractions were separated by PAGE and probed with antibodies to the indicated proteins. The reduced quantity of the proteins is likely
due to proteolysis during trypsin treatment. B, PPIX concentration is elevated in K562 cells overexpressing ABCB6, but not in cells expressing a nonfunctional mutant
(MT) ABCBS6 (1). The PPIX level is reduced by treatment with 200 pmol/L succinylacetone (SA), which does not affect cell viability as assessed by trypan blue dye
exclusion. C, total cellular heme, but not mitochondrial heme, is increased in ABCB6-overexpressing cells as determined by HPLC using heme b as a standard.
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and the spectrophotometrically measured hemoglobin
L concentration (right) in ABCB6-overexpressing

and control cells are reduced by succinylacetone (SA)
treatment. Columns, mean from three experiments;
bars, SD. ***, P < 0.001. B, mean cytosolic LDH and
mitochondrial succinate dehydrogenase activity are not
changed by ABCB6 overexpression (n = 3). C, the
quantity of Bcl-X, and apoptosis-inducing factor (AIF)
protein did not differ in ABCB6-overexpressing cells
and vector-control cells.

ABCB6

expressing the nonfunctional Walker A mutant (1) ABCB6 did not
(Fig. 1B, left). Addition of succinylacetone, a specific inhibitor of
ALA dehydratase, the second enzyme in de novo porphyrin
synthesis, reduced the level of PPIX in ABCB6-expressing cells
compared with that in vector-control cells (Fig. 1B, right; ref. 1).
HPLC analysis then showed intracellular heme concentration to be
more than four times as great in ABCB6-overexpressing cells
compared with that in vector-control cells (Fig. 1C, left).
Unexpectedly, the heme content of purified mitochondria was
almost identical in ABCB6-expressing and vector-control cells
(Fig. 1C, right). Because derepression of globin translation by the
heme-regulated inhibitor requires cytosolic heme (8), we examined
whether ABCB6 expression increased hemoglobin concentration.
ABCB6-expressing cells showed a dramatically greater hemoglobin
content than did vector-control cells, unless they were treated
with succinylacetone (Fig. 24). Therefore, the greater hemoglobin
content of ABCB6-expressing cells reflected greater de novo
porphyrin biosynthesis. (Succinylacetone treatment reduced he-
moglobin content similarly in vector-control (61%) and ABCB6-
expressing (84%) cells; Supplementary Fig. S1).

The increased heme in ABCB6-expressing cells did not alter
the expression of either mitochondrial or cytosolic proteins; the
activity of cytosolic LDH and mitochondrial succinate dehydroge-

nase (an iron-sulfur cluster protein containing a heme-associated
domain of unknown function) was unchanged by ABCB6 over-
expression (Fig. 2B).

The BH; protein Bcl-X;, reportedly plays a role in regulating
heme synthesis (18). However, the increased heme and hemoglobin
content of ABCB6-overexpressing cells was not accompanied
by a change in Bcl-X;, expression (Fig. 2C). Furthermore, ABCB6
overexpression does not affect the concentration of mitochondrial
adenine nucleotide translocator (see Supplementary Fig. S2), a
mitochondrial inner membrane transporter with a recently
reported novel role in heme transport (19).

ABCB6 overexpression increases catalase protein and
activity. Catalase is assembled in the peroxisomes (4), where the
catalase apoprotein is combined with imported heme (4). The
quantity and activity of catalase were strongly elevated (7-fold and
12-fold, respectively) in ABCB6-overexpressing cells (Fig. 34).
Superoxide dismutase activity increased only slightly with ABCB6
overexpression (data not shown); therefore, the increased catalase
expression was not induced by a superoxide dismutase-mediated
increase in hydrogen peroxide. Because catalase detoxifies
hydrogen peroxide, we compared the hydrogen peroxide sensitivity
of ABCB6-overexpressing cells and vector cells. ABCB6-over-
expressing cells were four times as resistant to hydrogen peroxide
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(estimated ICso, 8 mmol/L versus <2 mmol/L; Fig. 3B, left). However,
vector and ABCB6 cells were equally sensitive to etoposide (Fig. 3B,
right); therefore, this finding did not reflect general resistance to
cytotoxic agents. Furthermore, glutathione concentration was not
significantly affected by ABCB6 overexpression (data not shown).
The stability of catalase is related to heme concentration
(9, 10); therefore, we compared the turnover of catalase in ABCB6
cells and vector cells treated for various intervals with the protein
synthesis inhibitor cycloheximide (Fig. 3C). Immunoreactive
catalase declined rapidly in vector cells, but not in ABCB6-
overexpressing cells (estimated half-life, 8.7 h versus 88.5 h),
a finding consistent with heme-mediated stabilization of catalase
(9-11).

Catalase up-regulation depends on ABCB6 expression and
de novo porphyrin synthesis. We previously showed that,
when ABCB6 expression is reduced by ABCB6 small interfering
RNA (siRNA), de novo porphyrin synthesis is also reduced (1).
To determine whether ABCB6 mediates catalase up-regulation, we
treated ABCB6-expressing cells with ABCB6 siRNA or scrambled
siRNA for 48 hours. The ABCB6 siRNA substantially reduced
ABCB6 protein and significantly (40%; P < 0.05) reduced mean
catalase activity (Fig. 44 and B). This result is consistent with the
estimated half-life of ABCB6 ( ~ 24 hours) and catalase ( ~ 88 hours;
Fig. 3C) in ABCB6-overexpressing cells. We next tested whether

siRNA knockdown of ABCB6 altered sensitivity to hydrogen
peroxide. Cells ectopically expressing ABCB6 were significantly
more resistant than vector cells to high concentrations of hydrogen
peroxide but transfection with ABCB6 siRNA reduced resistance to
a level near that of vector cells (Fig. 4C). We attribute the
differences in cell survival between this experiment and that in
Fig. 3B to the conditions required for transfection of the siRNAs.

Because the levels of porphyrin biosynthesis and ABCB6
expression are directly linked (1), we next treated ABCB6-
expressing and vector cells with succinylacetone to inhibit
porphyrin biosynthesis and measured catalase activity. Catalase
activity was reduced 70% in vector cells, but only 30% in ABCB6-
overexpressing cells (Fig. 4B); this finding is consistent with greater
heme concentration, which facilitates catalase stabilization (9, 11),
in ABCB6-overexpressing cells.

ABCB6 expression increases cytochrome c oxidase activity
and cyanide resistance. Mitochondrial cytochrome c oxidase
comprises 13 subunits, and its function depends on the synthesis
and availability of heme (12, 20-22). Chemical inhibition of heme
synthesis and genetic defects in de novo heme synthesis reduce
activity by interfering with subunit assembly (23-25). Mitochon-
drial cytochrome ¢ oxidase activity was >4-fold greater in ABCB6-
overexpressing cells than in vector cells (Fig. 54, left). Notably,
the expression of two mitochondrial-encoded subunits and one
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nuclear-encoded subunit was unaltered by ABCB6 expression
(Supplementary Fig. S3). Cells overexpressing ABCB6 were also
more resistant to cyanide toxicity (Fig. 54, right), a finding
consistent with elevated cytochrome ¢ oxidase activity.

Insufficient mitochondria were isolated to allow measurement of
cytochrome ¢ oxidase activity after siRNA transfection; therefore,
we used mitochondria isolated from Abcb6 '~ MEFs for this
comparison. Because the basal cytochrome c oxidase activity
differed by a factor of ~ 70 in MEFs and K562 cells, the reduction in
cytochrome c oxidase activity in Abcb6 ~/~ MEFs was more variable
than anticipated (Fig. 5B, left) but was approximately half that in
Abch6™* MEFs, consistent with the 30% lower rate of de novo
porphyrin biosynthesis observed in Abcb6~'~ MEFs (Supplemen-
tary Fig. S4). The reduced cytochrome c¢ oxidase activity in
Abcb6™'~ MEFs paralleled their greater sensitivity to cyanide
(Fig. 5B, right). To confirm that de novo porphyrin synthesis is the
main pathway by which ABCB6 increases cytochrome ¢ oxidase
activity, we treated K562 cells with succinylacetone. Cytochrome c
oxidase activity was reduced similarly in vector cells (85%) and
ABCB6-expressing cells (94%; Fig. 5C). Collectively, these findings
indicate that ABCB6 expression regulates cytochrome c oxidase
activity by activating de novo heme biosynthesis.

Discussion

We previously showed that ABCB6 is primarily localized in the
outer mitochondrial membrane and regulates de rnovo porphyrin
biosynthesis, i.e., increased ABCB6 expression leads to increased

PPIX concentration (1). Here, we extended this to show that ABCB6
is not localized to the ER in K562 cells. We further show that
ABCB6 overexpression increases extramitochondrial (but not
mitochondrial) heme concentration 4-5-fold. This result implies
that neither conversion of PPIX to heme (via ferrochelatase) nor
mitochondrial heme efflux limits the accumulation of extramito-
chondrial heme when ABCB6 is overexpressed. Given that
extramitochondrial heme is required for activation of globin
synthesis (8), our findings show that ABCB6 overexpression
increases hemoglobin levels. ABCB6 overexpression also increased
the function, quantity, and/or activity of two other hemoproteins,
catalase, and cytochrome c¢ oxidase. These findings show that
ABCB6 is important in regulating not only heme synthesis and
concentration but also the formation of hemoproteins.

Our findings suggest that, by modulating intracellular heme
concentration, ABCB6 plays a primary role in regulating hemopro-
teins (1). For example, catalase assembly within the peroxisomes
requires heme (4) and both heme levels and catalase activity were
reduced in cells treated with succinylacetone (1) or with ABCB6
siRNA. Although de novo porphyrin biosynthesis and catalase
activity were reduced to a different extent, this discrepancy is likely
to reflect the time required to deplete the heme pool and the
relation between catalase stability and heme concentration (9, 11).
The latter factor is illustrated by the long half-life of catalase
(88.5 hours) and the diminished ability of succinylacetone
treatment (2 days) to reduce catalase activity in ABCB6-expressing
cells. The 40% reduction of catalase activity by ABCB6 siRNA was
sufficient to sensitize the cells to high concentrations of hydrogen
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peroxide, although ABCB6 provided only modest protection against
a lower concentration of hydrogen peroxide. Taken together,
these findings suggest that increased ABCB6 activity increases the
availability of heme, thereby driving holo-catalase formation and
enhancing the hydrogen peroxide tolerance of ABCB6-overexpress-
ing cells.

Increased intracellular heme concentration has also been
reported when the mitochondrial matrix-associated ABC trans-
porter ABCB7 is overexpressed (14), although that study did
not compare mitochondrial and cytosolic heme. We suspect
that ABCB7 overexpression does not increase cytosolic heme
or facilitate mitochondrial heme export, because the activity of
catalase was unchanged by ABCB7 overexpression despite a >2-fold
increase in cellular heme concentration (14). ABCB7 overexpres-
sion did increase the activity and quantity of the iron-sulfur cluster
protein ferrochelatase (14), and ABCB7 siRNA reduced the activity
of aconitase, another such protein (26). This result is consistent
with the view that ABCB?7 facilitates iron-sulfur cluster formation
(14, 26). We did not measure ferrochelatase, but we found that

another mitochondrial iron-sulfur cluster protein, succinate
dehydrogenase, is unaffected by ABCB6 expression. Therefore, the
effects of ABCB7 and ABCB6 on cellular enzymes differ markedly
and seem to be closely linked to their transport activities.

Our findings link de novo heme synthesis and ABCB6 function to
cytochrome c oxidase activity. Whereas inhibition of de novo heme
synthesis reduces cytochrome ¢ oxidase activity (13, 20, 22-24, 27),
we showed that ABCB6 up-regulation of heme synthesis increases
its activity. ABCB6 expression activated de novo porphyrin
synthesis (23) and robustly elevated cytochrome ¢ oxidase activity,
whereas reduction of heme synthesis by either chemical means
or ABCB6 knockout reduced cytochrome c oxidase activity. We
propose that, by increasing heme, ABCB6 either facilitates the
assembly of cytochrome ¢ oxidase or stabilizes it. Previous studies
have shown that genetic defects in or chemical inhibition of heme
synthesis affect the assembly of cytochrome ¢ oxidase (13, 21-23,
25, 27). Heme A has been shown to facilitate cytochrome ¢ oxidase
assembly, and impaired cytochrome ¢ oxidase assembly has been
linked to reduced expression of its subunits under conditions of
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heme deficiency (21-23, 27). We were unable to show elevated
levels of heme A and do not know whether this result reflects
methodologic problems or the absence of heme A elevation in the
K562 cells. However, our results show that ABCB6 expression is
likely to affect either the assembly of cytochrome ¢ oxidase or the
expression of some subunits, as these processes are affected by
heme biosynthesis.

ABCBS6 is overexpressed in cells exposed to chemical stressors
(e.g., C2-ceramide), including cancer cells that have become
resistant to cytotoxins. For example, the ABCB6 gene is amplified
in camptothecin-resistant cells (28, 29), and its overexpression is
associated with multiagent resistance (29-31). We showed that
enhanced ABCB6 expression alters the levels of cellular hemopro-
teins to provide a survival advantage. Although these cells were not
generally resistant to cytotoxic challenge (sensitivity to etoposide
was unaltered), they were resistant to cyanide and hydrogen
peroxide stress. Furthermore, treatment with C2-ceramide, which
enhances hydrogen peroxide concentration, up-regulates ABCB6
(32). Therefore, ABCB6 up-regulation may offer cells a survival
advantage by enhancing catalase expression (33), and the effect of
ABCB6 up-regulation on multiple hemoproteins may set the stage
for acquisition of multiagent resistance.

In erythroid cells, heme export from the mitochondria requires
ongoing protein synthesis (5, 6) and is facilitated by cytosolic
proteins (7, 34). A number of these are heme-binding proteins,
and some may be heme chaperones (4, 7, 35, 36). The absence of
mitochondrial heme accumulation in ABCB6-overexpressing cells
may reflect the coordinated action of a series of proteins within
the mitochondria and cytosol that facilitate the transfer of heme
from mitochondria to cytosol. This possibility is consistent
with evidence that inhibition of protein synthesis causes mito-
chondrial heme accumulation (4). Importantly, however, not all
heme-binding proteins facilitate heme efflux from the mitochon-
dria. For example, glutathione transferases bind heme but do not

mediate mitochondrial efflux (4). Thus, it is likely that, as heme
synthesis increases (due to elevated PPIX levels), heme export leads
to derepression of globin synthesis. Such a mechanism would be
consistent with the increased hemoglobin observed in ABCB6-
expressing cells. Moreover, given the increase in catalase activity, it
would imply that mitochondrial efflux of heme does not limit the
formation of holo-catalase.

Our results show that ABCB6 regulates not only de novo
porphyrin biosynthesis (1) but also the concentration of cellular
heme and hemoproteins in erythroid cells. This effect is directly
illustrated by the increased concentration of hemoglobin, which
depends on heme synthesis, the increased activity of cytochrome ¢
oxidase (an intramitochondrial heme-dependent enzyme), and the
increased activity of catalase (an extramitochondrial hemoprotein)
in ABCB6-expressing cells. These findings were unexpected,
because several factors might have limited the rate of formation
of heme and hemoproteins: (a) ferrochelatase conversion of PPIX
to heme (37, 38), () mitochondrial iron content, (¢) energy-
dependent transport of heme from the mitochondria (5, 39),
and (d) the availability of cytosolic heme-binding proteins or
chaperones. On the basis of our previous (1) and current findings,
we propose a model that depicts how ABCB6 regulates heme
concentration (Fig. 6). The mitochondrial conversion of PPIX to
heme by ferrochelatase is probably a slow step (given the elevated
concentration of PPIX), whereas the efflux of heme is very rapid.
This model accounts for the mitochondrial accumulation of PPIX
with no parallel change in mitochondrial heme and the role of
ABCB6 as a key modulator of the terminal steps in heme synthesis.
Whereas our studies have not excluded a small component of
ABCB6 residing at the plasma membrane (as recently reported in
ref. 16), it would be difficult to reconcile our findings of increased
cytosolic heme with such a location. According to convention, a
plasma membrane localized ABCB6 would be anticipated to efflux
porphyrins, as was shown by Paterson and colleagues (16).

Low ABCB6

Copro Il

Copro Il —a—n FPIX — Heme Heme

ABCB6 |

N mitochondria

cell membrane

High ABCB6

Copro Il
Copro lll ==—= PPIX — Heme

cell membrane

Hemoproteins

Heme

ABCB6 L\ l
mitochondria

Hemoproteins

Figure 6. Model showing effect of the quantity of ABCB6
on heme and hemoproteins. The size of the lettering
indicates relative concentration. The size of the arrows
indicates relative rate of movement.
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Mitochondrial ABCB6 Enhances Cell Survival under Stress

Our findings help to elucidate how ABCB6 activation produces
fundamental changes within cells by altering their hemoprotein

levels. They suggest that ABCB6 is frequently up-regulated in cells
exposed to chemotherapeutic agents (29, 30) or environmental

stress (32) as an adaptive response. This proposition is supported
by findings that ABCB6 expression is correlated with response to
multiple chemotherapeutic drugs (28). This dominant effect of
ABCB6 has implications for mitochondrial diseases related to
defects in cytochrome c oxidase and for other biochemical
processes that depend on heme synthesis. These results may also
provide insight into diseases associated with reduced ABCB6
expression (e.g., refractory thrombocytopenia; ref. 40).
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